FLUID COOLING | Shell & Tube C Series

COPPER/STEEL OR STAINLESS STEEL CONSTRUCTION

Features

- API/BASCO Interchange
- ASME Code Option
- Preferred for New Oil-Water Applications
- C-Series / SSC Series
- Rugged Steel Construction
- Low Cost
- Type 316 Stainless Steel Construction Optional
- Custom Designs Available
- Competitively Priced
- Optional Material Construction on C-Series: Tubes, Tubesheets, End Bonnets
- NPT, SAE O-Ring, SAE Flange, or BSPP Shell Side Connections Available
- End Bonnets Removable for Servicing
- Mounting Feet Included (May be rotated in 90° increments)

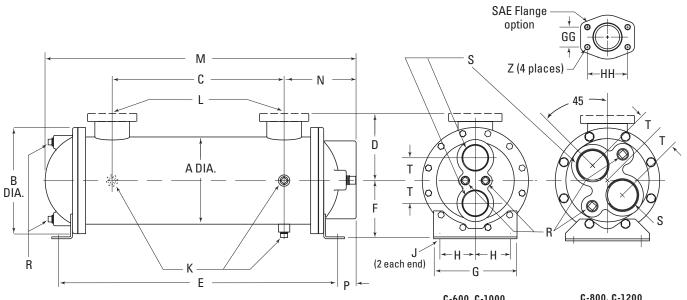
Ratings Standard

Maximum Shell Pressure 300 psi Maximum Tube Side Pressure 150 psi Maximum Temperature 300°F

Ratings ASME Code

Maximum Shell Pressure 300 psi Maximum Tube Side Pressure 150 psi ASME Code SSC-1700 200 psi Maximum Temperature 300°F

Materials C Series

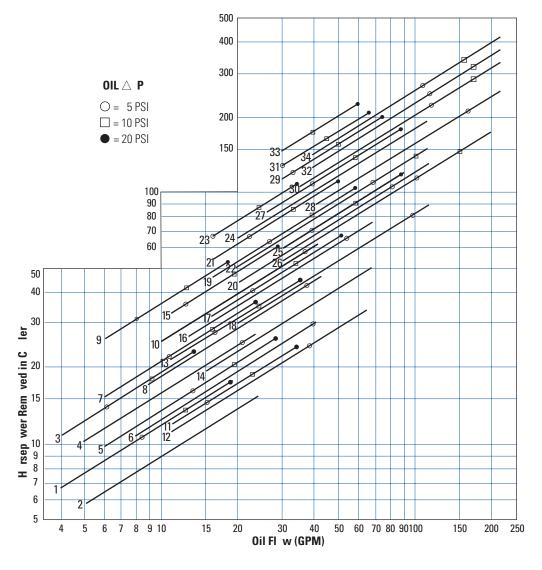

Tubes Copper Headers Steel Shell Steel Shell Connections Steel Baffles Brass End Bonnets Cast Iron Mounting Brackets Steel Gaskets Nitrile Rubber/Cellulose Fiber Nameplate Aluminum Foil

Materials SSC Series

Tubes 316 Stainless Steel Tubesheets 316 L Stainless Steel Shell 316 L Stainless Steel Shell Connections 316 L Stainless Steel Baffles 316 Stainless Steel End Bonnets 316 Stainless Steel Mounting Brackets Mild Steel Gaskets Nitrile Rubber/Cellulose Fiber Nameplate Aluminum Foil

Dimensions

Two Pass


C-600, C-1000, C-1700 Series C-800, C-1200 Series

Flange Size	GG	HH	Z - CF	Z - CFM
1	1.03	2.06	2.06 3/8-16 UNC I	
1.50	1.41	2.75	1/0.10 UNC M.10	
2	1.69	3.06	1/2-13 UNC	M-12
3	2.44	4.19	5/8-11 UNC	M-16

MODEL				D								L						S																																				
MODEL SIZE	A	В	C	NPT/BSPP Sae o-Ring	SAE Flange	E	F	G	H	J	K NPT	NPT/BSPP Flange	SAE 0-ring	Μ	N	Р	R NPT	NPT/ BSPP	Т																																			
614	3.25	4.50	10.00	2.62	2.88	16.38	2.75	4.18	1.62			1.00	#16 1 ⁵ /16-12	17.12	3.56	.38		1.00	1.00																																			
624	3.23	4.30	20.00	2.02	2.00	26.38	2.75	4.10	-	.44		1.00	UNF-2B	27.12	0.00	.00	(2)	1.00	1.00																																			
814			9.00			16.62				DIA.	(0)			17.88			.38																																					
824	4.25	6.00	19.00	3.25	3.50	26.62	3.50	4.25	1.75	DIA.	(3)			27.88	4.44	.63	.30	1.25	1.06																																			
836			31.00			38.62					.25	1.50	#24 1 ⁷ /8-12	39.88																																								
1014			9.00			17.12						1.50	UN-2B	18.62			(4)																																					
1024	5.25	6.75	19.00	3.75	4.00	27.12	4.00	5.25	2.00					28.62	5.00	.94	.38	1.50	1.50																																			
1036			31.00			39.12				.50				40.62			.30																																					
1224			18.25			27.13				x			#32	29.02																																								
1236	6.25	7.75	30.25	4.25	4.88	39.13	150 6	1 50	1 50	1 50	1 50	1 50	1 50	1 50	1 50	1 50	1 50	4.50	1 50	1 50 0	6.25	6.25	6.25 21	C 2E 2 EC	6.25	6.25	6.25	6.25	6.25	6.25	6.25	C 25	6.25	6.25	6.25	6.25	6.25 2.5	25 250	6.25 2.50	25 2 50	6 25 2 FO	26 2 60		2 50	.75		2.00	2 ¹ /2-12	41.03	5.43 1	1.00	,	2.00	1.56
1248	0.25	7.75	42.25	4.20	4.00	51.13	4.00	0.20	2.00			2.00	UN-2B	53.03	J.4J	1.00		2.00	1.50																																			
1260			54.25			63.13					(3)			65.03			(4)																																					
1724			17.00			27.50					.38			30.62			.50																																					
1736			29.00			39.50				.62				42.62			.00																																					
1748	8.62	10.50	41.00	5.84	6.81	51.50	5.75	8.25	3.50	x		3.00	-	54.62	7.06	1.81		2.50	2.25																																			
1760			53.00			63.50				.88		5.00		66.62]																																							
1772			65.00			75.50								78.62																																								

NOTE: We reserve the right to make reasonable design changes without notice. Consult factory. All dimensions are inches.

Performance Curves

м	odel	Ship Wt. (Ibs)
1.	C/SSC-614-1.3-4-F	17
2.	C/SSC-614-3-4-F	17
3.	C/SSC-624-1.3-4-F	24
4.	C/SSC-624-3-4-F	24
5.	C/SSC-814-1.7-4-F	32
6.	C/SSC-814-4-4-F	32
7.	C/SSC-824-1.7-4-F	41
8.	C/SSC-824-4-4-F	41
9.	C/SSC-836-1.7-4-F	53
10.	C/SSC-836-4-4-F	53
11.	C/SSC-1014-2-6-F	43
12.	C/SSC-1014-5-6-F	43
13.	C/SSC-1024-2-6-F	57
14.	C/SSC-1024-5-6-F	57
15.	C/SSC-1036-2-6-F	72
16.	C/SSC-1036-5-6-F	72
17.	C/SSC-1224-2.5-6-F	85
18.	C/SSC-1224-6-6-F	85
19.	C/SSC-1236-2.5-6-F	110
20.	C/SSC-1236-6-6-F	110
21.	C/SSC-1248-2.5-6-F	135
22.	C/SSC-1248-6-6-F	135
23.	C/SSC-1260-2.5-6-F	160
24.	C/SSC-1260-6-6-F	160
25.	C/SSC-1724-3.5-6-F	140
26.		140
27.	C/SSC-1736-3.5-6-F	180
28.	-1	180
29.	C/SSC-1748-3.5-6-F	220
30.	C/SSC-1748-8.4-6-F	220
31.	-,	260
32.	C/SSC-1760-8.4-6-F	260
33.	C/SSC-1772-3.5-6-F	300
34.	C/SSC-1772-8.4-6-F	300

*Shipping Weights are approximate

Selection Procedure

Performance Curves are based on 100SSU oil leaving the cooler 40°F higher than the incoming water temperature (40°F approach temperature). Curves are based on a 2:1 oil to water ratio.

Step 2 Determine Approach Temperature.

Desired oil leaving cooler $^{\circ}F$ – Water Inlet temp. $^{\circ}F$ = Actual Approach

Step 3	Determine Curve Horsepower Heat Load. Enter the information from above:								
	HP heat load x	40 Actual Approach	x Viscosity Correction A =	Curve Horsepower					

Step 4Enter curves at oil flow through cooler and curve horsepower.Any curve above the intersecting point will work.

Step 5 Determine Oil Pressure Drop from Curves. Multiply pressure drop from curve by correction factor B found on oil viscosity correction curve.

● = 5 PSI; ■ = 10 PSI; ▲ = 20 PSI; + = 40 PSI.

Oil Temperature

Oil coolers can be selected by using entering or leaving oil tempertures.

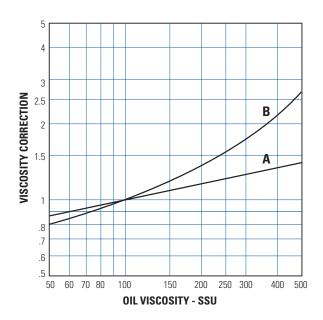
Typical operating temperature ranges are:

Hydraulic Motor Oil	110°F - 130°F
Hydrostatic Drive Oil	130°F - 180°F
Lube Oil Circuits	110°F - 130°F
Automatic Transmission Fluid	200°F - 300°F

Desired Reservoir Temperature

Return Line Cooling: Desired temperature is the oil temperature leaving the cooler. This will be the same temperature that will be found in the reservoir.

Off-Line Recirculation Cooling Loop: Desired temperature is the temperature entering the cooler. In this case, the oil temperature change must be determined so that the actual oil leaving temperature can be found. Calculate the oil temperature change (Oil \triangle T) with this formula:

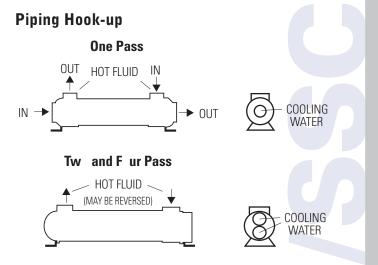

Oil △T=(BTU's/Hr.)/GPM Oil Flow x 210).

To calculate the oil leaving temperature from the cooler, use this formula:

Oil Leaving Temperature = Oil Entering Temperature - Oil \triangle T.

This formula may also be used in any application where the only temperature available is the entering oil temperature.

Oil Pressure Drop: Most systems can tolerate a pressure drop through the heat exchanger of 20 to 30 PSI. Excessive pressure drop should be avoided. Care should be taken to limit pressure drop to 5 PSI or less for case drain applications where high back pressure may damage the pump shaft seals.


Maximum Flow Rates

Example Model No. C/SSC - 1024 - 2 - 6 - F

¥	¥			V	
Unit Size	Baffle Spacing	Shell Side (GPM)	Tube O	Side (C T	GPM) F
600	1.3, 3	19, 29	48	24	12
800	1.7, 4	32, 69	84	42	21
1000	2, 5	41, 69	146	73	37
1200	2.5, 6	60, 115	224	112	56
1700	3.5, 8.4	125, 253	465	232	116

Exceptions to Maximum Shell Side Flows					
C/SSC-814-4-4-*	63 GPM Max.				
C/SSC-1014-2-6-*	33 GPM Max.				
C/SSC-1014-5-6-*	66 GPM Max.				
C/SSC-1724-3.5-6-*	105 GPM Max.				
C/SSC-1724-8.4-6-*	200 GPM Max.				

Caution: Incorrect installation can cause this product to fail prematurely, causing the shell side and tube side fluids to intermix.

Specific applications may have different piping arrangements. Contact factory for assistance.